Tumorigenesis using zebrafish model









Our research aims at providing novel insights into the basic biology of microglia, the resident immune cells of the central nervous system. In particular, we are interested in how the microglial network is established during vertebrate development, and subsequently maintained throughout life. Understanding these key aspects of microglia biology are of major importance since microglia are implicated in the pathology of most, if not all neurological disorders, and are now considered as major putative targets for therapeutic intervention in the field of neuroinflammation.

Our laboratory takes advantage of the strenghts of the zebrafish model system to address microglia development in ways not possible in other vertebrates. Because the first steps of microglia ontogeny occur early during embryogenesis, transparent transgenic zebrafish embryos offer great opportunities to characterize these processes in a non invasive way.

Our program relies on targeted genome editing gene manipulation using the TALEN and CRISPR technologies to manipulate microglia gene functions in vivo and examine the subsequent effects on microglia biology. We also perform live imaging analyses on fluorescent transgenic embryos to directly observe the behavior of microglial cells in vivo, as they interact in their microenvironment. In the long run, we also plan to develop zebrafish models of neurodegeneration and cancer that should prove instrumental for the analysis of microglia contribution in pathology and disease.